Search results

Search for "nitric acid" in Full Text gives 70 result(s) in Beilstein Journal of Nanotechnology.

Isolation of cubic Si3P4 in the form of nanocrystals

  • Polina K. Nikiforova,
  • Sergei S. Bubenov,
  • Vadim B. Platonov,
  • Andrey S. Kumskov,
  • Nikolay N. Kononov,
  • Tatyana A. Kuznetsova and
  • Sergey G. Dorofeev

Beilstein J. Nanotechnol. 2023, 14, 971–979, doi:10.3762/bjnano.14.80

Graphical Abstract
  • diffraction pattern of silicon (Figure 2). In addition, the synthesized NPs disintegrated entirely in nitric acid in contrast to Si NPs. This outcome indirectly confirms the formation of a different compound. To further ascertain the formation of a new substance, syntheses at temperatures of 400 and 900 °C
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2023

N-Heterocyclic carbene-based gold etchants

  • Robert B. Chevalier,
  • Justin Pantano,
  • Matthew K. Kiesewetter and
  • Jason R. Dwyer

Beilstein J. Nanotechnol. 2023, 14, 865–871, doi:10.3762/bjnano.14.71

Graphical Abstract
  • framework for gold whose efficacy can be tuned by chemical composition, solvent composition, exposure time, and concentration. Conventional gold etchants are predominated by inorganic chemical composition, including aqua regia (3 M:1 M hydrochloric acid to nitric acid), potassium cyanide, and triiodide [27
PDF
Album
Supp Info
Full Research Paper
Published 21 Aug 2023

Silver-based SERS substrates fabricated using a 3D printed microfluidic device

  • Phommachith Sonexai,
  • Minh Van Nguyen,
  • Bui The Huy and
  • Yong-Ill Lee

Beilstein J. Nanotechnol. 2023, 14, 793–803, doi:10.3762/bjnano.14.65

Graphical Abstract
  • . Experimental Chemicals and apparatus Silver nitrate (AgNO3, 99.9%) was purchased from Kojima Chemical (Japan). Sodium borohydride (NaBH4, 98%) and melamine (99%) were obtained from Sigma-Aldrich (Republic of Korea). Hydrofluoric acid (48–51%), sulfuric acid (98%), nitric acid (65–70%), rhodamine B (pure
PDF
Album
Supp Info
Full Research Paper
Published 21 Jul 2023

Carboxylic acids and light interact to affect nanoceria stability and dissolution in acidic aqueous environments

  • Matthew L. Hancock,
  • Eric A. Grulke and
  • Robert A. Yokel

Beilstein J. Nanotechnol. 2023, 14, 762–780, doi:10.3762/bjnano.14.63

Graphical Abstract
  • Aesar, >97%, 5094-24-6; ᴅʟ-3-hydroxybutyric acid sodium salt, Chem Impex Int’l Inc., 100.3%, 150-83-4/306-31-0; ascorbic acid, TCI, >99%, 50-81-7; ammonium nitrate, Fisher, ACS grade, 6484-52-2; sodium nitrate, VWR, ACS grade, 7631-99-4; sodium hydroxide, VWR, ACS grade, 1310-73-2; nitric acid, Sigma
  • the experiment the samples were stored in plastic DLS cuvettes, prepared from material that does not significantly absorb UVA radiation [59]. UVA 355 nm radiation at the site of samples exposed to light, at 10 a.m. May 31, 2023, was 6 µW/cm2. Sodium hydroxide and nitric acid were used to adjust
PDF
Album
Supp Info
Full Research Paper
Published 27 Jun 2023

The microstrain-accompanied structural phase transition from h-MoO3 to α-MoO3 investigated by in situ X-ray diffraction

  • Zeqian Zhang,
  • Honglong Shi,
  • Boxiang Zhuang,
  • Minting Luo and
  • Zhenfei Hu

Beilstein J. Nanotechnol. 2023, 14, 692–700, doi:10.3762/bjnano.14.55

Graphical Abstract
  • procedure, 6.2 g of ammonium heptamolybdate was dissolved in 100 mL of deionized water and stirred for 30 min at room temperature. Nitric acid was then added to the solution to reduce the pH to 1. After stirring for another 15 min, the solution was transferred into a 200 mL Teflon-lined autoclave and heated
PDF
Album
Supp Info
Full Research Paper
Published 07 Jun 2023

ZnO-decorated SiC@C hybrids with strong electromagnetic absorption

  • Liqun Duan,
  • Zhiqian Yang,
  • Yilu Xia,
  • Xiaoqing Dai,
  • Jian’an Wu and
  • Minqian Sun

Beilstein J. Nanotechnol. 2023, 14, 565–573, doi:10.3762/bjnano.14.47

Graphical Abstract
  • provide locations for the deposition of Zn2+ via electrostatic interactions. Cao et al. [26] have reported the growth of ZnO particles on MWCNTs through a similar mechanism. However, in their case, the functional groups on the MWCNTs were obtained by ultrasonic treatment in concentrated nitric acid. Four
PDF
Album
Supp Info
Full Research Paper
Published 04 May 2023

Bismuth-based nanostructured photocatalysts for the remediation of antibiotics and organic dyes

  • Akeem Adeyemi Oladipo and
  • Faisal Suleiman Mustafa

Beilstein J. Nanotechnol. 2023, 14, 291–321, doi:10.3762/bjnano.14.26

Graphical Abstract
PDF
Album
Review
Published 03 Mar 2023

Recent advances in green carbon dots (2015–2022): synthesis, metal ion sensing, and biological applications

  • Aisha Kanwal,
  • Naheed Bibi,
  • Sajjad Hyder,
  • Arif Muhammad,
  • Hao Ren,
  • Jiangtao Liu and
  • Zhongli Lei

Beilstein J. Nanotechnol. 2022, 13, 1068–1107, doi:10.3762/bjnano.13.93

Graphical Abstract
  • material is oxidized and broken down into CDs using oxidants such as sulfuric acid and nitric acid. As green methods are limited regarding the raw materials, the “top-down” method is not very common in green approaches [3][50]. The “bottom-up” method consist of carbonization of smaller organic molecules
PDF
Album
Review
Published 05 Oct 2022

A nonenzymatic reduced graphene oxide-based nanosensor for parathion

  • Sarani Sen,
  • Anurag Roy,
  • Ambarish Sanyal and
  • Parukuttyamma Sujatha Devi

Beilstein J. Nanotechnol. 2022, 13, 730–744, doi:10.3762/bjnano.13.65

Graphical Abstract
  • micron alumina slurry (CHI Instruments) on micro cloth pads sequentially to a mirror-like finish with fine wet emery paper (grain size 4000), and rinsed with ultrapure water. Then the electrode was separately dipped into concentrated NaOH, nitric acid, and methanol for 120 s, followed by sonication in
PDF
Album
Supp Info
Full Research Paper
Published 28 Jul 2022

Revealing the formation mechanism and band gap tuning of Sb2S3 nanoparticles

  • Maximilian Joschko,
  • Franck Yvan Fotue Wafo,
  • Christina Malsi,
  • Danilo Kisić,
  • Ivana Validžić and
  • Christina Graf

Beilstein J. Nanotechnol. 2021, 12, 1021–1033, doi:10.3762/bjnano.12.76

Graphical Abstract
  • solar cells and other fields of electronics and optoelectronics will be enhanced. Experimental All experiments were carried out using standard glass equipment. The reaction vessels were cleaned before use with nitric acid (65 vol %, VWR Chemicals) and were subsequently repeatedly rinsed with deionized
PDF
Album
Supp Info
Full Research Paper
Published 10 Sep 2021

The preparation temperature influences the physicochemical nature and activity of nanoceria

  • Robert A. Yokel,
  • Wendel Wohlleben,
  • Johannes Georg Keller,
  • Matthew L. Hancock,
  • Jason M. Unrine,
  • D. Allan Butterfield and
  • Eric A. Grulke

Beilstein J. Nanotechnol. 2021, 12, 525–540, doi:10.3762/bjnano.12.43

Graphical Abstract
  • hydrodynamic diameter (Smoluchowski's approximation) of the as-prepared- (as-loaded) and the partially dissolved nanoceria was determined by dynamic light scattering (DLS) using a Brookhaven 90Plus Particle Size Analyzer. The zeta potential (0.5 mg/mL) from pH 0.5 to 13, adjusted with nitric acid and sodium
PDF
Album
Supp Info
Full Research Paper
Published 04 Jun 2021

Nickel nanoparticle-decorated reduced graphene oxide/WO3 nanocomposite – a promising candidate for gas sensing

  • Ilka Simon,
  • Alexandr Savitsky,
  • Rolf Mülhaupt,
  • Vladimir Pankov and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2021, 12, 343–353, doi:10.3762/bjnano.12.28

Graphical Abstract
  • prepared according to [52] using the sol–gel method. A 1.23 mol/L aqueous solution of sodium tungstate dihydrate (Na2WO3⋅2H2O) was added into a 12 mol/L aqueous solution of nitric acid under constant rapid stirring. The prepared sol of tungstic acid was washed in distilled water using multiple
  • CO/N2 mixture was received from Joint Stock Company "Kryon”. Liquid acetone was classified as “chemically pure” (purissimum). The NO2 gas was obtained by dissolving Cu in nitric acid (“chemically pure” grade). The CO/air mixture was measured in flow mode. NO2 and acetone were measured in a static
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2021

Characterization, bio-uptake and toxicity of polymer-coated silver nanoparticles and their interaction with human peripheral blood mononuclear cells

  • Sahar Pourhoseini,
  • Reilly T. Enos,
  • Angela E. Murphy,
  • Bo Cai and
  • Jamie R. Lead

Beilstein J. Nanotechnol. 2021, 12, 282–294, doi:10.3762/bjnano.12.23

Graphical Abstract
  • ) and centrifuged at 3250g for 15 min at 20 °C (Eppendorf 5810R centrifuge) [35][64]. The original (total Ag) and ultra-filtered (dissolved Ag) samples were then acidified with concentrated nitric acid (70% HNO3) and diluted to 1% acid prior to the measurement of Ag concentration with ICP-MS. Each
PDF
Album
Supp Info
Full Research Paper
Published 24 Mar 2021

Free and partially encapsulated manganese ferrite nanoparticles in multiwall carbon nanotubes

  • Saja Al-Khabouri,
  • Salim Al-Harthi,
  • Toru Maekawa,
  • Mohamed E. Elzain,
  • Ashraf Al-Hinai,
  • Ahmed D. Al-Rawas,
  • Abbsher M. Gismelseed,
  • Ali A. Yousif and
  • Myo Tay Zar Myint

Beilstein J. Nanotechnol. 2020, 11, 1891–1904, doi:10.3762/bjnano.11.170

Graphical Abstract
  • (0.5 g), manganese nitrate (Mn(NO3)2·6H2O, 2.0 g) and iron nitrate (Fe(NO3)3·9H2O, 5.6 g) dissolved in 18.0 mL of nitric acid (69%) was heated to reflux for 4.5–5 h. The nitric acid solution was decanted and the black sludge was filtered through a glass fiber filter paper. A vacuum filter flask was
  • used and the sample was kept under filtration for 6 h to remove the remaining nitric acid along with existing dissolved materials. The sample was oven-dried at 373 K and calcined in a stream of N2 at 673 K, for 4 h, for the conversion of nitrates into ferrites. Structural, surface, electronic, magnetic
PDF
Album
Supp Info
Full Research Paper
Published 29 Dec 2020

Nanocasting synthesis of BiFeO3 nanoparticles with enhanced visible-light photocatalytic activity

  • Thomas Cadenbach,
  • Maria J. Benitez,
  • A. Lucia Morales,
  • Cesar Costa Vera,
  • Luis Lascano,
  • Francisco Quiroz,
  • Alexis Debut and
  • Karla Vizuete

Beilstein J. Nanotechnol. 2020, 11, 1822–1833, doi:10.3762/bjnano.11.164

Graphical Abstract
  • [24][31][32][33]. In some cases, secondary phases can be removed by further treatment such as leaching with nitric acid. However, acid leaching as well as other purification steps most often lead to lower yields and to the formation of larger particles. A promising synthetic technique for the
  • BiFeO3. Bismuth nitrate pentahydrate Bi(NO3)3·5H2O, ferric nitrate nonahydrate Fe(NO3)3·9H2O, concentrated nitric acid (HNO3, 69%), triblock copolymer poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (Pluronic P123, Mav = 5800, EO20PO70EO20), tetraethylorthosilicate (TEOS
PDF
Album
Supp Info
Full Research Paper
Published 07 Dec 2020

Plant growth regulation by seed coating with films of alginate and auxin-intercalated layered double hydroxides

  • Vander A. de Castro,
  • Valber G. O. Duarte,
  • Danúbia A. C. Nobre,
  • Geraldo H. Silva,
  • Vera R. L. Constantino,
  • Frederico G. Pinto,
  • Willian R. Macedo and
  • Jairo Tronto

Beilstein J. Nanotechnol. 2020, 11, 1082–1091, doi:10.3762/bjnano.11.93

Graphical Abstract
  • ; nitric acid (HNO3, 65.0%) was provided by F. Maia; sodium hydroxide (NaOH, 99.0%) was provided by Isofar and sodium hypochlorite (NaClO, 2.5%) was supplied by Merck. Water used for synthesis and washing of LDH was deionized by a Milli-Q® system. Synthesis of the layered double hydroxide The ZnAl-NAA-LDH
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2020

Microwave-induced electric discharges on metal particles for the synthesis of inorganic nanomaterials under solvent-free conditions

  • Vijay Tripathi,
  • Harit Kumar,
  • Anubhav Agarwal and
  • Leela S. Panchakarla

Beilstein J. Nanotechnol. 2020, 11, 1019–1025, doi:10.3762/bjnano.11.86

Graphical Abstract
  • treatment is essential before using metal particles in further microwave arc experiments. All metal powders were treated with 0.5 M nitric acid under sonication for 10 min to create rough surfaces. In this process, copper partially gets oxidized to Cu2O. The X-ray diffraction (XRD) patterns show reflections
  • without the need for surfactants and solvents. Experimental Roughening the surface metal powders Commercially purchased micrometer-sized metal powders (Ni, Cu and Zn) are treated with nitric acid to create rough surfaces. In a typical reaction, 100 mg of metal powder is transferred to a beaker containing
  • 10 mL of 0.5 M nitric acid and sonicated for 10 min. The resultant powder is washed with water several times until pH 7 and dried it in an oven at 50 °C for 2 h before being used in further microwave experiments. Synthesis of graphitic carbon nitride (g-C3N4) g-C3N4 is synthesized and characterized
PDF
Album
Supp Info
Full Research Paper
Published 13 Jul 2020

Uniform Fe3O4/Gd2O3-DHCA nanocubes for dual-mode magnetic resonance imaging

  • Miao Qin,
  • Yueyou Peng,
  • Mengjie Xu,
  • Hui Yan,
  • Yizhu Cheng,
  • Xiumei Zhang,
  • Di Huang,
  • Weiyi Chen and
  • Yanfeng Meng

Beilstein J. Nanotechnol. 2020, 11, 1000–1009, doi:10.3762/bjnano.11.84

Graphical Abstract
  • (ICP-AES, iCAP7400, Thermo Scientific, USA) was used to test the Fe and Gd concentrations in the samples. For this procedure, 100 μL of nanocubes were dissolved in 500 μL of concentrated nitric acid and then heated up to 200 °C until the liquid evaporated. This procedure was repeated several times
PDF
Album
Full Research Paper
Published 08 Jul 2020

A novel dry-blending method to reduce the coefficient of thermal expansion of polymer templates for OTFT electrodes

  • Xiangdong Ye,
  • Bo Tian,
  • Yuxuan Guo,
  • Fan Fan and
  • Anjiang Cai

Beilstein J. Nanotechnol. 2020, 11, 671–677, doi:10.3762/bjnano.11.53

Graphical Abstract
  • template, Kalsoom et al. [15] treated non-porous HPHT microdiamond powder with a size of 2–4 μm with sodium hydroxide and nitric acid followed by intensive washing with deionised water to reduce the tendency to agglomerate. Then, 30 wt % of the synthetic microparticles was added to the acrylate polymer to
PDF
Album
Full Research Paper
Published 20 Apr 2020

pH-Controlled fluorescence switching in water-dispersed polymer brushes grafted to modified boron nitride nanotubes for cellular imaging

  • Saban Kalay,
  • Yurij Stetsyshyn,
  • Volodymyr Donchak,
  • Khrystyna Harhay,
  • Ostap Lishchynskyi,
  • Halyna Ohar,
  • Yuriy Panchenko,
  • Stanislav Voronov and
  • Mustafa Çulha

Beilstein J. Nanotechnol. 2019, 10, 2428–2439, doi:10.3762/bjnano.10.233

Graphical Abstract
  • fluorescein acrylate were supplied by Sigma-Aldrich. Colemanite (Ca2B6O11·5H2O) was obtained from ETI Mine Works General Management (Turkey). Iron(III) oxide, hydrochloric acid, and nitric acid were purchased from Sigma-Aldrich. Highly pure NH3 gas (99.98%) was provided by Schick GmbH & Co. KG. All solutions
PDF
Album
Supp Info
Full Research Paper
Published 10 Dec 2019

Synthesis of highly active ETS-10-based titanosilicate for heterogeneously catalyzed transesterification of triglycerides

  • Muhammad A. Zaheer,
  • David Poppitz,
  • Khavar Feyzullayeva,
  • Marianne Wenzel,
  • Jörg Matysik,
  • Radomir Ljupkovic,
  • Aleksandra Zarubica,
  • Alexander A. Karavaev,
  • Andreas Pöppl,
  • Roger Gläser and
  • Muslim Dvoyashkin

Beilstein J. Nanotechnol. 2019, 10, 2039–2061, doi:10.3762/bjnano.10.200

Graphical Abstract
PDF
Album
Supp Info
Full Research Paper
Published 28 Oct 2019

Porous silver-coated pNIPAM-co-AAc hydrogel nanocapsules

  • William W. Bryan,
  • Riddhiman Medhi,
  • Maria D. Marquez,
  • Supparesk Rittikulsittichai,
  • Michael Tran and
  • T. Randall Lee

Beilstein J. Nanotechnol. 2019, 10, 1973–1982, doi:10.3762/bjnano.10.194

Graphical Abstract
  • tissue-transparent NIR extinctions, are the objects of future research. Experimental Materials. The following chemicals were purchased from the indicated suppliers and used without further modification: formaldehyde, sodium hydroxide, potassium persulfate (KPS, 99%), ammonium hydroxide (30% NH3), nitric
  • acid, hydrochloric acid (all from EM Science), potassium carbonate (from J. T. Baker), poly(diallyldimethylammonium chloride) MW: 100,000 (pDADMAC), tetraethylorthosilicate (TEOS), tetrakis(hydroxymethyl)phosphonium chloride (THPC), 3-aminopropyltrimethoxysilane (APTMS, all from Aldrich), silver
PDF
Album
Full Research Paper
Published 04 Oct 2019

Growth of lithium hydride thin films from solutions: Towards solution atomic layer deposition of lithiated films

  • Ivan Kundrata,
  • Karol Fröhlich,
  • Lubomír Vančo,
  • Matej Mičušík and
  • Julien Bachmann

Beilstein J. Nanotechnol. 2019, 10, 1443–1451, doi:10.3762/bjnano.10.142

Graphical Abstract
  • line, and only afterwards was the chamber opened. Since the deposition took place on the entire chamber, the film deposited on the glass slide could be used for further analysis. The chamber had to be cleaned with nitric acid after every deposition. Substrates of Si with native oxide and Pt/Si were
PDF
Album
Full Research Paper
Published 18 Jul 2019

BiOCl/TiO2/diatomite composites with enhanced visible-light photocatalytic activity for the degradation of rhodamine B

  • Minlin Ao,
  • Kun Liu,
  • Xuekun Tang,
  • Zishun Li,
  • Qian Peng and
  • Jing Huang

Beilstein J. Nanotechnol. 2019, 10, 1412–1422, doi:10.3762/bjnano.10.139

Graphical Abstract
  • the target degradation product. In addition, the photocatalytic mechanism was further analyzed by investigating the structure and photochemical properties of the catalyst. Experimental Materials Tetrabutyl titanate, ethanol, acetic acid, nitric acid, bismuth nitrate pentahydrate (Bi(NO3)3·5H2O
  • solution A. Solution B was obtained by mixing 4 g of diatomite, 20 mL of ethanol, 0.5 mL of glacial acetic acid and 1.5 mL of 0.1 mol/L nitric acid under stirring. In order to obtain the precursor colloid, solution B was dripped into solution A under stirring. After that, the precursor was dried at 60 °C
PDF
Album
Supp Info
Full Research Paper
Published 16 Jul 2019

An iridescent film of porous anodic aluminum oxide with alternatingly electrodeposited Cu and SiO2 nanoparticles

  • Menglei Chang,
  • Huawen Hu,
  • Haiyan Quan,
  • Hongyang Wei,
  • Zhangyi Xiong,
  • Jiacong Lu,
  • Pin Luo,
  • Yaoheng Liang,
  • Jianzhen Ou and
  • Dongchu Chen

Beilstein J. Nanotechnol. 2019, 10, 735–745, doi:10.3762/bjnano.10.73

Graphical Abstract
  • min and then thoroughly washed with DI water. Before stored for later use, the sample was blow-dried. The alkaline solution was composed of NaOH (40.0 g), SDS (1.0 g) and DI water (1.0 L), while the acidic solution consisted of sulfuric acid solution (40%) and nitric acid solution (10%). Anodization
PDF
Album
Supp Info
Full Research Paper
Published 19 Mar 2019
Other Beilstein-Institut Open Science Activities